In Vivo Transcriptional Profiling of Yersinia pestis Reveals a Novel Bacterial Mediator of Pulmonary Inflammation

نویسندگان

  • Roger D Pechous
  • Christopher A Broberg
  • Nikolas M Stasulli
  • Virginia L Miller
  • William E Goldman
چکیده

UNLABELLED Inhalation of Yersinia pestis results in primary pneumonic plague, a highly lethal and rapidly progressing necrotizing pneumonia. The disease begins with a period of extensive bacterial replication in the absence of disease symptoms, followed by the sudden onset of inflammatory responses that ultimately prove fatal. Very little is known about the bacterial and host factors that contribute to the rapid biphasic progression of pneumonic plague. In this work, we analyzed the in vivo transcription kinetics of 288 bacterial open reading frames previously shown by microarray analysis to be dynamically regulated in the lung. Using this approach combined with bacterial genetics, we were able to identify five Y. pestis genes that contribute to the development of pneumonic plague. Deletion of one of these genes, ybtX, did not alter bacterial survival but attenuated host inflammatory responses during late-stage disease. Deletion of ybtX in another lethal respiratory pathogen, Klebsiella pneumoniae, also resulted in diminished host inflammation during infection. Thus, our in vivo transcriptional screen has identified an important inflammatory mediator that is common to two Gram-negative bacterial pathogens that cause severe pneumonia. IMPORTANCE Yersinia pestis is responsible for at least three major pandemics, most notably the Black Death of the Middle Ages. Due to its pandemic potential, ease of dissemination by aerosolization, and a history of its weaponization, Y. pestis is categorized by the Centers for Disease Control and Prevention as a tier 1 select agent most likely to be used as a biological weapon. To date, there is no licensed vaccine against Y. pestis. Importantly, an early "silent" phase followed by the rapid onset of nondescript influenza-like symptoms makes timely treatment of pneumonic plague difficult. A more detailed understanding of the bacterial and host factors that contribute to pathogenesis is essential to understanding the progression of pneumonic plague and developing or enhancing treatment options.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caspase-3 Mediates the Pathogenic Effect of Yersinia pestis YopM in Liver of C57BL/6 Mice and Contributes to YopM's Function in Spleen

The virulence protein YopM of the plague bacterium Yersinia pestis has different dominant effects in liver and spleen. Previous studies focused on spleen, where YopM inhibits accumulation of inflammatory dendritic cells. In the present study we focused on liver, where PMN function may be directly undermined by YopM without changes in inflammatory cell numbers in the initial days of infection, a...

متن کامل

Immunohistochemical detection of Yersinia pestis in formalin-fixed, paraffin-embedded tissue.

Yersinia pestis infection usually is limited to lymph nodes (bubo); rarely, if bacteria are aerosolized, pneumonic plague occurs. We developed an immunohistochemical assay using a monoclonal anti-fraction 1 Y pestis antibody for formalin-fixed tissues. We studied 6 cases using this technique. Respiratory symptoms were prominent in 2 cases; histologically, one showed intra-alveolar inflammation,...

متن کامل

Francisella tularensis subsp. tularensis Induces a Unique Pulmonary Inflammatory Response: Role of Bacterial Gene Expression in Temporal Regulation of Host Defense Responses

Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host re...

متن کامل

Role of the PhoP–PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract

The Yersinia pestis PhoPQ gene regulatory system is induced during infection of the flea digestive tract and is required to produce adherent biofilm in the foregut, which greatly enhances bacterial transmission during a flea bite. To understand the in vivo context of PhoPQ induction and to determine PhoP-regulated targets in the flea, we undertook whole-genome comparative transcriptional profil...

متن کامل

Genome-Wide Mutant Fitness Profiling Identifies Nutritional Requirements for Optimal Growth of Yersinia pestis in Deep Tissue

UNLABELLED Rapid growth in deep tissue is essential to the high virulence of Yersinia pestis, causative agent of plague. To better understand the mechanisms underlying this unusual ability, we used transposon mutagenesis and high-throughput sequencing (Tn-seq) to systematically probe the Y. pestis genome for elements contributing to fitness during infection. More than a million independent inse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015